Range Addition II
LeetCode: Range Addition II
Problem:
Given an m * n matrix M initialized with all 0's and several update operations.
Operations are represented by a 2D array, and each operation is represented by an array with two positive integers a and b, which means M[i][j] should be added by one for all 0 <= i < a and 0 <= j < b.
You need to count and return the number of maximum integers in the matrix after performing all the operations.
Example 1:
- Note:
1. The range of m and n is [1,40000].
2. The range of a is [1,m], and the range of b is [1,n].
3.The range of operations size won't exceed 10,000.
- Examples:
Input:
m = 3, n = 3
operations = [[2,2],[3,3]]
Output: 4
Explanation:
Initially, M =
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
After performing [2,2], M =
[[1, 1, 0],
[1, 1, 0],
[0, 0, 0]]
After performing [3,3], M =
[[2, 2, 1],
[2, 2, 1],
[1, 1, 1]]
So the maximum integer in M is 2, and there are four of it in M. So return 4.
- Analysis:
For operations[a, b] matrix, the [a, b] means matrix[0 - a][0 - b] to add by 1.
As a result, we calculate the frequency of each a and b and sort in ascending order.
Finally, we sum from rear to front and find the cursors.
- Code - Java:
class Solution {
public int maxCount(int m, int n, int[][] ops) {
int[] row = new int[m];
int[] col = new int[n];
int len = ops.length;
for (int i = 0; i < len; i++) {
row[(ops[i][0] - 1)] += 1;
col[(ops[i][1] - 1)] += 1;
}
int maxRow = m - 1;
int maxCol = n - 1;
for (int i = m - 2; i >= 0; i--) {
row[i] += row[i + 1];
if (row[i] > row[i + 1]) {
maxRow = i;
}
}
for (int i = n - 2; i >= 0; i--) {
col[i] += col[i + 1];
if (col[i] > col[i + 1]) {
maxCol = i;
}
}
return (maxRow + 1) * (maxCol + 1);
}
}
- Code - C++:
class Solution {
public:
int maxCount(int m, int n, vector<vector<int>>& ops) {
vector<int> row(m, 0);
vector<int> col(n, 0);
for (int i = 0; i < ops.size(); i++) {
row[(ops[i][0] - 1)] += 1;
col[(ops[i][1] - 1)] += 1;
}
int maxRow = m - 1;
int maxCol = n - 1;
for (int i = m - 2; i >= 0; i--) {
row[i] += row[i + 1];
if (row[i] > row[i + 1]) {
maxRow = i;
}
}
for (int i = n - 2; i >= 0; i--) {
col[i] += col[i + 1];
if (col[i] > col[i + 1]) {
maxCol = i;
}
}
return (maxRow + 1) * (maxCol + 1);
}
};
- Code - Python:
class Solution(object):
def maxCount(self, m, n, ops):
"""
:type m: int
:type n: int
:type ops: List[List[int]]
:rtype: int
"""
row = [0 for i in range(m)]
col = [0 for j in range(n)]
for i in range (len(ops)):
row[(ops[i][0] - 1)] += 1
col[(ops[i][1] - 1)] += 1;
maxRow, maxCol = m - 1, n - 1
for i in range(m - 2, -1, -1):
row[i] += row[i + 1];
if (row[i] > row[i + 1]):
maxRow = i
for i in range(n - 2, -1, -1):
col[i] += col[i + 1];
if col[i] > col[i + 1]:
maxCol = i
return (maxRow + 1) * (maxCol + 1)
- Time Complexity: O(M + N)
- Space Complexity: O(M + N)